
NOTATION 

W, r, z, cylindrical coordinates; x, y, z, Cartesian coordinates; H and S, channel 
depth and width; ~, lead angle of the spiral; mo, angular velocity of the smooth disk; ri, 
r, ro, inside radius, the radius at any given point, and the outside radius of the spiral 
along its median line; AW, Ar, Ax, Ay, pressure gradients; p, density of the fluid; c I and 
c2, integration constants; T~z, TrY, Txz, Tyz, components of the stress tensor; VN, Vr, Vx, 
Vy, projections of the velocity of the fluid_on the axes ~, r, x, y, respectively; T, stress 
deviator; B and n, rheological parameters; A, strain rate tensor; VI, V2, V3, V4, dimen- 
sionless velocities of the fluid; a, ratio of pressure gradients; Qx and Qy, true flow rates 
in the directions x and y, respectively; Qx,max, true flow rate corresponding to a zero pres- 
sure head; qx and qy, dimensionless flow rates; I and X, spiral length and pitch; ~i and ~o, 
angular coordinates of the inside endpoint and the outside endpoint of the spiral on its 
median line; p, pressure; Pi, fluid pressure at the pump inlet; and N, input power. 
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AN ARTERIAL HEAT PIPE WITH A GROOVED EVAPORATOR 

V. S. Tarasov UDC 621.565.94 

A method is developed for calculating the hydrodynamic heat-transfer boundary 
of arterial heat pipes with capillary channels having a triangular profile in 
the evaporator. Comparison with experimental data demonstrates the satisfac- 
tory accuracy of the method. 

Evaporators for arterial heat pipes (AHP), equipped with ring-shaped capillary channels, 
e.g., grooves with a triangular profile (V-channels) (Fig. I), can operate with very dense 
heat fluxes with high heat-exchange coefficients [I-4]. However, there is no satisfactory 
theory for calculating the limiting characteristics of such AHP. The difficulty with the 
hydrodynamic theory developed in [1, 2] is that it does not relate the magnitude of the 
hydrodynamic heat-transfer boundary (HHTB), which determines the maximum attainable heat 
flux density in the evaporator, to the pressure losses in the heat carrier in the rest of the 
AHP and it does not provide a physically correct estimate of the influence of the contact 
angle on the HHTB. 

When heat is input uniformly, all evaporator channels are loaded identically and the 
HHTB will be determined by the channel in the beginning section of which, for x = 0, the 
meniscus is curved more strongly than ~n the neighboring channels [5]. In most cases, this 
is the edgemost channel that is farthest away from the condensor. For this channel, the 
following relation is valid: 

APeap= Ap~ @ APre~ ( 1 ) 

The pressure differential APrem in the rest of the AHP causes the meniscus to be curved in 
the starting section with a radius 

Ro = a/Aptera" (2) 

From the starting section to the end section x = Xm, the liquid moves under the action 
of a capillary pressure gradient, compensating for frictional resistance [I, 2]: 

dp___~'=_ dpea____p. (3) 
dx dx 
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Fig. I. Computational model for an evaporator with V- 
channels in AHP: l) evaporator groove; 2) porous connec- 
tor; 3) artery. 

Assuming that the gradient of the pressure losses due to the friction of the liquid as 
it undergoes a laminary flow with a linearly decreasing mass flow rate is determined by 
Poiseuille's law, after integrating (3) taking into account (2), we obtain an equation that 
determines the maximum heat flux density in the evaporator for isothermal liquid flow in the 
V-channels (overheating of the liquid is small), when t > So, a + | ~/2; 

3 

or so (2C~+C~), (4) 
qiso-- ~, xr ~ 

where 

~O 

C, = sing-~16 j" (ctg~ + tg 13. ~'2cos=13-- ~']] ~sin lgd~; (5) 
~+O 

~o = arccos (So/Ro) = arccos (s0hpm/e); (6) 

C , =  sin~d [ c t g e + / g ( ~ + O )  g / 2 - - ( e + O )  ]3 - -  cos (= + O). (7) 
24 cos 2 (~ + O) 

The a u t h o r s  o f  [ l ,  2] examine  the  r e g i m e  Sx=o = So as  a l i m i t i n g  r e g i m e  f o r  AHP, b u t  
the heat pipe is fully operational in cases for which Sx=o < So. Equation (4) in this case 
takes the form 

~f sx3 = 0 
qim= v'x2mt C~. (8) 

Thus ,  t h e  g e n e r a l  fo rm f o r  t h e  maximum h e a t  f l u x  d e n s i t y  in  t h e  e v a p o r a t o r ,  i n d e p e n d e n t  
of its operational regime, will be 

ors3 o 
q ,o= (9) 

For high values of the heat flux density and large overheating of the liquid, although 
less than ATlow, changes in the viscosity become significant. This can be taken into account 
in Eqs. (4), (8), and (9) by a correction in the form of the ratio of the viscosity at the 
saturation temperature to the viscosity at the average temperature: 

~,' (T") ( ] 0) 
qe  = qiw" , ( T " + A T / 2 )  

I n t r o d u c i n g  a l i n e a r  a p p r o x i m a t i o n  f o r  t h e  t e m p e r a t u r e  d e p e n d e n c e  o f  t h e  v i s c o s i t y  
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Fig. 2. Influence of the contact 

angle on HHTB for a = 30~ I) 8o = 

90~ 2) 78; 3) 60; 4) 80 = ~ +(~; 
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and expressing the overheating of the liquid in terms of the heat-exchange coefficient in 
the evaporator, we obtain 

= (1/qim-- bv'/2a.~ -l. (12)  

The upper limit in the integral in (5) is determined by pressure losses in the AHP tract 
to the evaporator according to (6), while the lower limit is determined by the sum of the 
half angle of the profile and the contact angle. The latter significantly affects the mag- 
nitude of both coefficients CI and C2 and the HHTB. Figure 2 shows the dependence of the 
maximum heat flux density in the evaporator on the contact angle for different initial states 
of the meniscus Ro(O = 0) = Ro = idem in dimensionless form: 

2 C ~ + C ~  ~r ~ o ( 0 = 0 ) > ~ + @ ,  
k =  qim(O) 2C O=O)+C~(O=O) 

= (13) 
qisgO O) l [c~ (= + 0)] C~ ~t 60(0 = O) ~ =  + O. 

( (cos3~o)[2Cl (o = 0 ) +  C2(O = 0)1 

This expression agrees wi th an analogous dependence presented in [6] for  nonar te r ia l  heat 
pipes with longitudinal channels. According to [I, 2], k = cosO, which is valid only for 

= 0, i.e., for rectangular channels. For triangular channels, the error increases with 
increasing ~ and 0. For ~ = 30 ~ , the accuracY is sufficient for O~ 15 ~ but for O § (7/ 

2 -- ~) the error becomes large. 

It is possible to find the HHTB in AHP with a grooved evaporator analytically only in 
the particular case when it is known that in the rest of the AHP the flow of both phases is 

laminary, Sx=o < so and g = 0: 

qim(g = 0 ) ~ r {  CX_~ [COS(~ O) ]3}1/4 =__ -- . (14) 

where f = Apremr/(qisoV'). 

If g=/=0, then the explicit expression for HHTB is so cumbersome that it is easier to 

find it by numerically solving the equation 

( p ' E h - - r ) - . 3 / ~  (15)  
q i~  = qf~(g = O) 1 • qis~'f 

In the general case, the HHTB is found by a numerical solution to the system of equa- 
tions (9) and the hydraulics of the remaining part of the AHP. Figure 3 shows an example of 
such a calculation for a water AHP, the construction of which is described in [3, 4]. Its 
evaporator is made of copper and is equipped with an external grooved triangular profile 
with an apex angle of 60 ~ . The diameter of a groove is ]3 mm, the spacing is 0.25 mm, and 
the width of the channel is 0.2 mm. The artery is connected to the groove at four points, 
uniformly positioned along a circle so that Xm = 5.1 mm. The greatest difference in the 
levels between the evaporator and the condensor with the AHP in a horizontal position is 22 

mm. 
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Fig. 3. Graphical calculation of the maximum heat flux den- 
sity in AHP with a grooved evaporator operating on water: I-6) 
evaporator; I'-6') remaining part of the AHP; I, 1') T" = 35]~ 
2, 2') T" = 343~ 3, 3') T" = 328~ 4,4') T" = 314~ 5, 5') 
T" = 305~ 6, 6') T" = 300~ 7) so/Ro = cos a. qiso, W/cm 2. 

Fig. 4. Comparison of computed and experimental data for water 
AHP with a grooved evaporator: |) calculation according to Eq. 
(15); 2) EN. (12)~ experiment: 3) q~; 4) q~. 

Using the technique described in [5], we computed the losses of liquid and steam 
throughout the entire AHP, except the evaporator, with a constant vapor temperature, and 
based on these, we constructed the curves I'-6' showing the dependence of the heat flux 
density in the evaporator as a function of the dimensionless curvature of the meniscus in 
the starting section of the V-channel. Then, similar relations I-6 were constructed from 
Eq. (9) for the same values of the vapor temperature for the evaporator itself. The verti- 
cal line 7 is drawn through the boundary value so/Ro = cos a (O= 0). To the left of this 
line Bo > ~ and the curves 1-6 were constructed according to (4), and to the right of the 
line, Bo = a so that the curves were constructed according to (8). 

The intersection of the curves I-6 and I'-6', corresponding to a single vapor tempera- 
ture, determines the HHTB for this vapor temperature. The calculations were carried out for 
temperatures for which experimental data were available. All points of intersection turned 
out to lie along a single vertical line, i.e., when the HHTB is attained, the curvature of 
the meniscus at the inlet section of the V-channel did not depend on the vapor temperature. 
This is explained by the smallness of the losses in vapor pressure for the AHP being exam- 
ined in comparison with the pressure losses in the liquid (5% for the lowest T"), while the 
pressure losses in the liquid in the evaporator and in the rest of the AHP obey the same 
linear law. It is interesting to note that the points of intersection lie to the right of 
the vertical line 7, i.e., the meniscus in the inlet section of the V-channel is indented 
(Sx=o < so), and for this AHB, the limiting heat flux can be determined by solving (15). 

In Fig. 4 the working points of the HHTB are rewritten in the coordinates T" -- qe and a 
second curve is constructed according to (12) taking into account changes in the viscosity of 
the overheated liquid. In constructing this curve, the coefficient of heat exchange in the 
evaporator was determined from a slightly modified formula, compared with that proposed in 
[2]: 

~' Rb 1--43"10-~/2So 
~e= 6,75exp(--O,0588 ~~ 2t R e 2Clq-C~ (16) 

The modification consists of the fact that in order to take into account the increase 
in the thermal resistance of a real evaporator, the spacing of the channels and not their 
width is taken as a characteristic dimension. Figure 4 also shows experimental points, cor- 
responding to normal operation of the evaporator (qe) and overdrying (q~) (experimental set- 
up is described in [3]). The true value of the HHTB must lie between them. The agreement 
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between the experimental and computed values of HHTB is very good for high heat flux densi- 
ties (exceeding 40 W/cm2); it is somewhat worse for smaller values, for which the experimen- 
tal points are lower by 10-20%. Probably, this is explained by the increase in the relative 
heat losses in the experimental setup with a decPease in the power transmitted in the AHP. 

The overheating of the evaporator wall measured in the experiment was not used in con- 
structing the curve 2 in Fig. 4, since the overheating was quite high: the thermocouples, 
measuring the temperature of the evaporator wall, were placed on its outer face on the inlet 
side of the heat source and the face was cooled only by heat conduction to the working region, 
on which there was a groove. The accuracy of the measurement of the wall temperature had no 
particular significance for establishing the onset of HHTB. Nevertheless, even strongly 
underestimated values of the heat exchange coefficients in the evaporator, computed accor- 
ding to the measured overheating of its endface, are quite impressive: from 20,000 to 
28,000 W/m2"K. A calculation based on formula (16) gives, for these conditions, 37,200 W/ 
m2.m. 

It was impossible to establish in the experiments the presence or absence of boiling of 
the water in the groove of the evaporator. It was only possible to present indirect proof 
for its absence. The noise associated with bubbles could not be heard. And, most important, 
overheating of the water was not enough for boiling. In [2], the overheating of the water, 
necessary for onset of boiling in a copper groove with T" = 366~ in the region qe = 50-80 
W/cm 2, is determined in the range 22-23~ The greatest overheating of the water in the ex- 
periments could not be greater than 17.5~ for T" = 351~ If the fact that the distilled 
water in the AHP was carefully degassed is taken into account, then it must be acknowledged 
that there is much evidence in support of the absence of boiling. 

NOTATION 

g, acceleration of gravity, m/sec2; h, distance along the vertical between the edgemost 
! 

faces of the evaporator and the condensor, m; Ape , pressure differential in the liquid in 
the evaporator, N/m=; Aprem, pressure differential in the heat carrier in the rest of the 
AHP with the exclusion of the evaporator, N/m2; APcap, moving capillary potential for circu- 
lation of the heat carrier, N/m2; qiso~ heat flux density in the evaporator for isothermal 
liquid flow, W/m2; qe, heat flux density taking into account overheating of the fluid, W/m2; 
Rb, radius of the heat inlet surface, m; Re, radius of the working evaporator surface, m; r, 
heat of vaporization, J/kg; 2Sx, width of the meniscus of the liquid in the x-section, m; 
2So, width of the channel, m; 2t, spacing of the'channels, m; T", saturation temperature, 
vapor temperature, ~ AT, overheating of the liquid relative to T", ~ x, coordinate along 
the channel axis, m; Xm, maximum distance for transport of fluid in the channel, m; 2~, angle 
of the channel profile; de, heat-exchange coefficient in the evaporator, W/m2.K; %, coeffi- 
cient of thermal conductivity, W/m.K; ~, kinematic viscosity coefficient, m2/sec; p, density, 
kg/m3; o, coefficient of surface tension, N/m. The indices are as follows: ', liquid; and 
, vapor. 
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